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The phase diagram of prolate and oblate particles in the restricted orientations approximation(Zwanzig
model) is calculated. Transitions to different inhomogeneous phases(smectic, columnar, oriented, or plastic
solid) are studied through minimization of the fundamental measure functional(FMF) of hard parallelepipeds.
The study of parallel hard cubes(PHC’s) as a particular case is also included motivated by recent simulations
of this system. As a result a rich phase behavior is obtained which include, apart from the usual liquid crystal
phases, a very peculiar phase(called here discotic smectic) which was already found in the only existing
simulation of the model, and which turns out to be stable because of the restrictions imposed on the orienta-
tions. The phase diagram is compared at a qualitative level with simulation results of other anisotropic particle
systems.
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I. INTRODUCTION

Onsager first showed that the isotropic-nematic liquid
crystal phase transition occurs in systems of anisotropic par-
ticles interacting via hard core repulsions[1]. He studied a
system of hard spherocylinders in the limit of infinite ani-
sometryk=sL+Dd /D→` (k is the spherocylinder length to
breath ratio) using the second virial form of the free energy,
which in this limit is exact for the isotropic phase. The effect
that higher virial coefficients have in the isotropic-nematic
transition was later studied by Zwanzig, who introduced a
model of hard prolate uniaxial parallelepipeds with axes ori-
ented along the three perpendicular directions[2]. This pe-
culiar model, which obviously treats the orientational de-
grees of freedom in an unrealistic way, has the advantage of
being accessible to the calculation of higher virial coeffi-
cients up to seventh order in the infinite aspect ratio limit. He
showed that including all these virials the isotropic-nematic
transition also occur, although the exact value of the coexist-
ing nematic density strongly depends on the order of the
approximation. The Padé approximant generated by the trun-
cated cluster expansion provides a much more stable se-
quence of the parameters which characterize the transition
[3]. This stability leaves little room for doubts regarding the
existence of the transition in the model. The virial expansion
resumed and expressed in the variabley=r / s1−rvd, with r
the number density of parallelepipeds andv their volume,
converges more rapidly than the traditional expansion inr,
as was shown by Barboy and Gelbart for different hard par-
ticle geometries[4]. Thus, the so-calledy3 expansion of the
Zwanzig model was applied to the study of the isotropic-
nematic transition as well as to the study of properties of its
interface[5]. For the latter the authors applied the smoothed
density approximation of the free energy functional in the
spirit of Tarazona’s weighted density approximation for the
fluid of hard spheres[6].

The restricted orientations model for hard cylinders was
also used to describe the structural properties of molecular
fluids near hard walls or confined in a slit. This time the
density functional was constructed from the bulk direct cor-
relation function approximated by a linear combination of
geometrical functions[7].

Computer simulations of a variety of models of non-
spherical hard core particles showed that the excluded vol-
ume effects could not only account for the stability of nem-
atics, but also for the existence of liquid crystal
inhomogeneous phases such as the smectic[8] and columnar
[9] phases. Particularly the complete phase diagram of freely
rotating hard spherocylinders[10], including not only smec-
tic, but also a plastic solid phase and different oriented solid
phases was calculated. Several density functional theories,
all of them based on weighted or modified weighted density
approximations, are able to reproduce reasonably well the
isotropic-smectic or nematic-smectic transitions[11–13] in
the whole range of aspect ratios where the smectic is stable,
and in some cases, transitions from the isotropic fluid to the
plastic or oriented solid phases[14]. In all these approxima-
tions the excess free energy is evaluated by integration of the
free energy per particle of a reference fluid(typically spheres
or hard parallel ellipsoids) evaluated at some weighted or
effective density. In some cases, the employed weight is di-
rectly the normalized Mayer function between spherocylin-
ders[12,13]; in others, it is calculated from the knowledge of
the bulk correlation function of the reference fluid[13]. For
the latter case, the term proportional to the Mayer function
enters into the integrand as a multiplicative factor of the free
energy per particle. The hard sphere free energy functional is
recovered in both approaches as the limiting case ofL=0.

The fundamental measure theory(FMT) first developed
for hard spheres by Rosenfeld[15] was another starting point
for constructing a density functional for anisotropic particles.
In its general formalism the excess free energy density of the
fluid is a function of some weighted densities obtained by
convoluting the density profiles with weights which are char-*Electronic address: yuri@math.uc3m.es
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acteristic functions of the geometry of a single particle
whose integrals are the so-called fundamental measures: vol-
ume, surface area, and mean radius of the particles. Unfor-
tunately, the Mayer function of two convex anisotropic bod-
ies cannot be decomposed as a finite sum of convolutions of
single particle weights[16], which is the keystone for con-
structing such a functional. Thus, the low density limit of the
direct correlation function is no more the Mayer function.

In spite of this, Chamoux and Perera have taken advan-
tage of Rosenfeld’s extension of FMT to hard convex bodies
by using it to compute the direct correlation function and
patching out the low density limit with the exact Mayer func-
tion [17]. In this way they have obtained the equation of state
for various convex hard bodies(such as hard ellipsoids,
spherocylinders, and cut spheres), have predicted ordered
phases and, recently, have study demixing in binary mixtures
of rigidly ordered particles[17,18].

Following a similar procedure a density functional for an-
isotropic particles has been proposed which interpolates be-
tween the Rosenfeld’s hard sphere functional and Onsager’s
functional for elongated rods. The resulting model was tested
by calculating the isotropic-nematic transition in systems of
hard spherocylinders and hard ellipsoids[19].

Although the authors of this work suggest that the result-
ing theory can be applied to the study of inhomogeneous
systems, the huge computational efforts that their numerical
implementations involve is the reason for the absence of any
result in this direction. One way to circumvent this difficulty
is to reduce the continuous orientational degree of freedom
to three discrete orientations(Zwanzig model). Implement-
ing this idea some authors have recently applied the Zwanzig
model to the study of interfacial properties of the hard rod
fluid interacting with a hard wall or confined in a slit, for a
one-component[20] and a polydisperse mixture[21], and
also to the study of bulk and interfacial properties of hard
platelet binary mixtures[22]. All these models are based on
Onsager’s density functional approximation. The increase of
the number of allowed orientations in this functional particu-
larized for hard spherocylinders results in the presence of an
artificial nematic-nematic transition in the one component
fluid as the authors of Ref.[23] have shown. This result
indicates that certain cares must be taken in the direct ex-
trapolation of the results obtained from this theory.

FMF was also constructed for a mixture of parallel hard
cubes combining Rosenfeld’s original ideas with a dimen-
sional cross over constraint[24]. The latter appears to be
very important to describe correctly the structure of inhomo-
geneous fluids in situations of high confinement and to de-
scribe well the structural properties of the solid phase[25].
The dimensional cross over has been used as an important
ingredient to develop a density functional for a binary mix-
ture of hard spheres and needles, assuming that the needles
are too thin to interact with each other directly[26].

Taking a ternary mixture of parallel hard cubes and scal-
ing each species along one of the three Cartesian axes with
the same scaling factor a FMF for the Zwanzig model is
obtained. This functional has already been applied to the
study of the effect that polydispersity has on the stability of
the biaxial phase in a binary mixture of rods and plates[27]
and on the relative stability of the smectic and columnar

phases due to the presence of polydispersity[28].
The FMF for Zwanzig’s model in the homogeneous limit

coincide with the scaled particle theory and thus with the
so-calledy3 expansion which, as pointed out before, first
began to be used in Ref.[5] as a model to study the
isotropic-nematic phase transitions in fluids of hard parallel-
epipeds. But this functional, through its minimization, also
allows us to calculate inhomogeneous density profiles. This
functional has been applied recently to study the isotropic-
nematic interface of a binary mixture of hard platelets[29].
Its structural and thermodynamic properties resulting from
the FMF minimization show complete wetting by a second
nematic. The same phenomenon was found in a binary mix-
ture of hard spherocylinders[30].

The phase diagram for Zwanzig’s model including the
smectic, columnar, and solid phases has never been carried
out, only spinodal instability boundaries have been traced
[28]. The main purpose of this work is to obtain the complete
phase diagram for this model and to compare the results with
the only existing simulation of the lattice version of the
model, which has been carried out for two different aspect
ratios[31]. This will test the predictive power of the FMF for
anisotropic inhomogeneous phases. As a particular case, the
system of parallel hard cubes will be studied. In Ref.[32] a
bifurcation analysis and a Gaussian parametrization of the
density profiles were used to calculate the free energy and
pressure of the solid phase. Here a free minimization will be
performed to calculate not only the solid but also the smectic
and columnar phases and compare the obtained results with
recent simulations of parallel hard cubes[33,34].

II. FMF FOR ZWANZIG MODEL

The FMF for hard parallelepipeds was already described
in detail in Ref.[24]. A brief summary of the theory will be
presented here putting emphasis on its numerical implemen-
tation to calculate the equilibrium inhomogeneous phases.

A ternary mixture of hard parallelepipeds of cross section
s 2 and lengthL with their uniaxial axes pointing to thex, y,
or z directions is described in terms of their density profiles
rmsr d sm=x,y,zd. Following the FMT for hard parallelepi-
peds in three dimensions the excess free energy density in
reduced units can be written as[24]

Fexcsr d = Fs1dsr d + Fs2dsr d + Fs3dsr d, s1d

where theFskd’s are

Fs1d = − n0 lns1 − n3d, s2d

Fs2d =
n1 ·n2

1 − n3
, s3d

Fs3d =
n2xn2yn2z

s1 − n3d2 , s4d

with weighted densities
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nasr d = o
m

frm * vm
sadgsr d, s5d

i.e., they are sums of convolutions of the density profiles
with the following weights:

vm
s0dsr d =

1

8p
k=1

3

d Ss m
k

2
− uxkuD , s6d

vm
s3dsr d = p

k=1

3

uSs m
k

2
− uxkuD , s7d

vm
s1jdsr d =

2uSs m
j

2
− uxjuD

d Ss m
j

2
− uxjuD vm

s0dsr d, s8d

vm
s2jdsr d =

d Ss m
j

2
− uxjuD

2uSs m
j

2
− uxjuDvm

s3dsr d, s9d

where the notationxk sk=1,2,3d for the x, y, andz coordi-
nates has been employed. The functionsdsxd andusxd are the
usual delta Dirac and Hevisaide functions ands m

j =s+sL
−sdd m

j with d m
j the Kronecker delta.

The following constraints on the density profiles were im-
posed.(i) The solid phase has the simple parallelepipedic
unit cell with uniaxial symmetry, i.e., the periods in the three
spatial directions ared' for x,y and di for z. The orienta-
tional director is selected parallel toz. (ii ) The density profile
of each species has the form

rmsr d = rgmo
k=0

n

ak
smdp

j=1

3

cossqjkjxjd, s10d

whereqj =2p /dj is the wave number along thej direction,
k =sk1,k2,k3d is the vector defined by the reciprocal lattice
numbers, andn=sn1,n2,n3d is the vector at which the har-
monic expansion is truncated. Thus, Eq.(10) is the Fourier
expansion of the density profilesrmsr d truncated at somen.
This cutoff is selected in such a way that it guarantees small
enough values ofan

smd. The first Fourier amplitudes of all
species are fixed to onesa0

smd=1d and consequently
Vcell

−1 eV cell
drrmsr d=rgm with Vcell=d'

2 di the unit cell volume,
r the mean total density over the unit cell, andgm the occu-
pancy probability of speciesm in the unit cell, which obvi-
ously fulfills the conditionom gm=1.

In the plastic solid phase these occupancy probabilities
are 1/3 for each species while they deviate from this value in
the oriented solid phase. The uniaxial symmetry also implies
that gx=gy=g', gz=gi=1−2g' and rxsx,y,zd=rysy,x,zd,
rzsx,y,zd=rzsy,x,zd. Thus, the Fourier amplitudes verify
ask1,k2,k3d

sxd =ask2,k1,k3d
syd andask1,k2,k3d

szd =ask2,k1,k3d
szd . The total number

of Fourier amplitudes[except thes0,0,0d term of all spe-

cies] is reduced by these symmetries toNa=sn'+1dsni+1d
3s3n'+4d /2−2, (n1=n2;n', n3;ni) independent vari-
ables. These variables together withg', q' andqi span the
variable space in which the FMF must be minimized.

The density profiles of columnar and smectic phases are
obtained from Eq.(10) substituting n=sn' ,n' ,0d and n
=s0,0,nid. From the definition(5), Eqs.(6)–(9) and the den-
sity profiles(10), the weighted densities can be easily calcu-
lated resulting in

nasr d = ro
m,k

gmak
smdxa,k

smdp
j=1

3

cossqjkjxjd, s11d

x0,k
smd = p

j=1

3

f0sj j ,k
smdd, s12d

x3,k
smd = vp

j=1

3

f3sj j ,k
smdd, s13d

x1j ,k
smd = s j

mf3sj j ,k
smdd

f0sj j ,k
smdd

x0,k
smd, s14d

x2j ,k
smd =

1

s j
m

f0sj j ,k
smdd

f3sj j ,k
smdd

x3,k
smd, s15d

with v=Ls2 the particle volume, f0sxd=cosx, f3sxd
=sin x/x, andj j ,k

smd=qjkjs j
m /2.

The substitution of Eqs.(10) and(11) into the free energy
per unit cell

F ;
bF
Vcell

= V cell
−1 E

Vcell

dr fFidsr d + Fexcsr dg, s16d

Fidsr d = o
m

rmsr dfln„rmsr dLm
3
… − 1g, s17d

with Fidsr d the ideal part of the free energy density, and its
minimization with respect to theNa+3 variables allows the
calculation of the equilibrium free energy and the density
profiles of inhomogeneous phases.

To characterize the structure and orientational order of
these phases the following total density and order parameter
profiles will be used:

rsr d = o
m

rmsr d, s18d

Qsr d = 1 −
3

2

frxsr d + rysr dg
rsr d

. s19d

The selection ofQsr d as an order parameter is motivated by
its uniaxial symmetry propertyQsx,y,zd=Qsy,x,zd and its
uniform limit value Q=1−3g's−1/2øQø1d, which coin-
cides with the usual definition of the nematic order parameter
for the Zwanzig model:Q=0sg'=1/3d for the isotropic
phase andQ=1sg'=0d for the perfectly aligned nematic
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phase. Although the solid and columnar phases might have
local biaxiality frxsx,y,zdÞrysx,y,zdg, the integral over the
unit cell of any previously defined biaxial order parameter is
always equal to zero as a consequence of the symmetries of
the density profiles.

III. PHASE DIAGRAMS

The phase diagrams presented in this work were calcu-
lated for a set of aspect ratios ranging fromk=0.1 tok=10,
corresponding to the aspect ratios of the most anisotropic
oblate and prolate parallelepipeds studied here. The volume
of all particles(cubes or prolate or oblate parallelepipeds) are
fixed to 1 and thus the mean packing fractionh is equal to
the mean densityr. From the equationv=Ls2=1 the paral-
lelepiped edge lengthsL ands can be calculated as a func-
tion of the aspect ratiok=L /s asL=k2/3 ands=k−1/3. For
eachk, fixing the mean densityr and using appropriate ini-
tial guesses for theNa+3 variables with symmetries corre-
sponding to the smectic, columnar or solid phases, the en-
ergy per unit cell(16) was minimized and thus the free
energy for each phase was obtained. Varyingr and repeating
the former steps the free-energy branches of the different
inhomogeneous phases have been calculated. The common
tangent construction allowed the calculation of the coexisting
densities between those phases in the case of first order tran-
sitions. To evaluate numerically the three dimensional inte-
gral of the free energy density(16) a Gauss-Chebyshev
quadratures has been employed.

A. Parallel hard cubes

This subsection is devoted to the study of the parallel hard
cube systemsk=1d. The PHC equation of states of the fluid
and solid phases as obtained from the FMT and the Monte
Carlo simulation results are compared. While the solid phase
is very well described with this formalism the exact location
of the fluid-solid transition is very poorly estimated. The
fundamental reasons of this difference are discussed here
through a critical analysis of the fluid equation of state re-
sulting from the FMF. It will be shown that possible modifi-
cations of the FMF slightly improve the location of the tran-
sition point at the expense of the correct description of the
solid branch.

In Ref. [27] the PHC fluid was already studied with the
same FMF but using a Gaussian parametrization for the den-
sity profile. Through a minimization procedure and also from
a bifurcation analysis a second-order fluid-solid transition
was found atr=0.3143 with a lattice periodd=1.3015 and a
fraction of vacanciesn=0.3071[27]. Recent simulations on
the same system also showed a second-order transition to the
solid but with very different transition parametersr
=0.48±0.02 in Ref.[33] and r=0.533±0.010 in Ref.[34].
No evidence for the vacancies predicted by FMT was found,
although the authors recognized that the vacancies might be
suppressed by the boundary conditions in the small systems
accessible to simulations[34].

The main problem of the FMF for hard cubes is that it
recovers in the homogeneous limit the scaled-particle equa-

tion of state, which overestimates the pressure calculated
from the exact virial expansion up to seventh order. This
expansion has a maximum atr<0.6 and then goes down
very quickly to reach negative values[35]. The poorly con-
vergent character of the virial series makes it impossible to
construct an equation of state for hard cubes, such as the
Carnahan-Starling equation for the hard-sphere fluid, which
estimates reasonably well all the known virial coefficients
and diverges at close packing. On the other hand, it is well
known that the FMF describes accurately the fluid structure
in situations of high confinement, including the solid phase
near close packing. For example, at high densities the func-
tional recovers the cell theory, which is asymptotically exact
when the packing fraction goes to 1, and also compares rea-
sonably well with computer simulations[34]. These nice
properties are a consequence of a fundamental restriction,
namely, the dimensional cross-over[24], imposed in the con-
struction of the FMF. The latter implies that the functional in
dimensionD reduces to the functional in dimensionD−1
when the original density profile is constrained toD−1 di-
mensions, i.e.,rsDdsr d=rsD−1dsr dd sxDd, wherexD is the coor-
dinate that is eliminated on going fromD to D−1 dimen-
sions.

One possible procedure to improve the description of the
uniform fluid of hard cubes at the level of the FMF is to
follow the same method used in Refs.[36] and[37], in which
the hard-sphere Carnahan-Starling equation of state is im-
posed through the modification of the third termFs3d [see
Eq. (1)] of the excess free-energy density while keeping the
exact density expansion of the direct correlation function up
to first order. Unfortunately the absence of a good equation
of state for the PHC fluid with the already mentioned prop-
erties makes this procedure less systematic compared to that
of hard spheres[36,37].

Following this purpose, the original excess free-energy
density for hard cubes(1) is now replaced by

Fexcsr d = o
k=1

3

fk„n3sr d…Fskdsr d, s20d

with the fksn3d’s selected in such a way as to keep the correct
first order density expansion of the direct correlation func-
tion and to obtain the right virial expansion up to the seventh
order of the PHC equation of state. As the original FMF for
hard cubes gives the third virial coefficient correctly, these
conditions imply that f1,2sn3d,1+Osn3

2d and f3sn3d,1
+Osn3d for small n3. Two further important conditions im-
posed on thefksn3d’s are their limiting behavior when the
local packing fraction tends to unity: limn3→1fasn3d=1,
which asymptotically guarantees the correct cell-theory limit,
and the positive signs of their values, which guarantee the
convexity of the fluid free energy. Unfortunately this proce-
dure breaks the dimensional cross-over property, but in prin-
ciple should describe the fluid-solid transition in hard cubes
better.

Among all the functionsfa’s that have been tried, even
those which give better results[the particular case of
f1,2sn3d=1] are far from getting the transition point near the
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simulation one. In Fig. 1(a) the scaled-particle equation of
state, the improved equation of state

bP = r + r
] Fexc

] r
− Fexc, s21d

with Fexc being the uniform limit of Eq.(20), and finally, the
symmetric Padé approximant of the seventh-order virial se-
ries are plotted. In the first two curves the bifurcation points
are shown. The new bifurcation point calculated from Eq.
(20) is located atr=0.3378, and the period and fraction of
vacancies of the solid ared=1.3249 andn=0.2143. As can
be seen from Fig. 1(a), the new equation of state still over-
estimates the fluid pressure, but to a lesser extent. Although
the new functional gets a higher transition density and the
fraction of vacancies decreases, there is still disagreement
between theory and simulations. The equation of state of the
PHC solid calculated from the minimization of the original
FMF with respect to the Gaussian density profiles compare
very well with simulations for densitiesr*0.5, whereas the
modified version underestimates the solid pressure.

At this point the main conclusion that can be drawn is that
the modification of the FMF in order to improve the descrip-
tion of the uniform fluid spoils the good description of the
solid phase. As the modification of the FMF was done at the
expense of loosing the dimensional cross-over property(and
this spoils the good description of highly inhomogeneous
phases), and the modified versions do not show too many
differences in the prediction of the fluid-solid transition, it is
worthless to use them to study nonuniform phases.

Setting qi=q'=q=2p /d, gm=1/3, andak
smd=bk in the

density profiles(10) and minimizing the FMF, Eq.(16), of
parallel hard cubessk=1d with respect to the Fourier ampli-
tudes and the wave numberq, the free energy per unit cell
for solid fn=ns1,1,1dg, columnarfn=ns1,1,0dg and smectic
fn=ns0,0,1dg phases were obtained. The results are shown
in Fig. 2. From the isotropic liquid at the same densityr
=0.3134 three inhomogeneous solutions: solid, columnar,
and smectic, bifurcate, with the solid phase being the stable
one. While the free energy difference between solid and co-
lumnar phases is relatively small, the smectic phase is clearly
thermodynamically unfavorable.

The number of Fourier amplitudes necessary to describe
adequately the density profile increases with the density, and
thus the numerical calculations becomes more and more time
consuming. Nevertheless, the scenario shown in Fig. 2, with
the solid being the only stable phase, occurs at high densities
as the simulations and cell-theory have confirmed[34]. The
minimization of the FMF using a Gaussian parametrization
of the density profiles of columnar and solid phases shows
very similar quantitative results[34]. In fact the equation of
state of the parallel hard-cube solid from FMT calculations
with this parametrization compares very well at high densi-
ties with simulations[28]. The results presented here are
much more accurate than those obtained through the Gauss-
ian parametrization.

B. Prolate parallelepipeds

This subsection is devoted to studying the phase diagram
of prolate particlessk.1d. The results obtained from nu-
merical minimization of the FMF of parallelepipeds with
fixed k=4.5 are shown in Fig. 3. The free energies per unit
volume of those phases which are stable in some range of
densities are plotted. As can be seen the isotropic phase un-
dergoes a first-order phase transition to the so-called discotic
smectic(DSm) phase. This peculiar phase is a layered phase
(similar to the smectic phase) but with the long axes of the
parallelepipeds lying within the layers. There is no orienta-
tional order in the layers, what means that the order param-
eterQszd reaches negative values at the positions of the den-

FIG. 1. (a) Equations of state of the PHC liquid following the
FMT sLFMTd, the modified versionsLMFMTd, and the symmetric
Padé approximant. The circle and square represent the location of
bifurcation points of the fluid-solid transition.(b) The equations of
state of the solid phase from the original FMTsSFMTd and from the
modified versionsSMFMTd. The arrows represent the fluid-solid tran-
sitions predicted in Ref.[33] (the lower value) and Ref.[34] (the
higher value). Open and black diamonds are the simulation results
from Ref. [33] corresponding to the liquid and solid phases,
respectively.

FIG. 2. Free energy per unit cell as a function of the mean
densityr. A linear function ofr was subtracted from the free energy
F* ;F−mr−n to make clear the energy differences between the
isotropic sId, columnarsCd, and solidsSd phases.

FIG. 3. Free energy per unit volume as a function of the mean
densityr. The involved phases are labeled as in Fig. 2. DSm: dis-
cotic smectic phase. The common-tangent constructions, which de-
termine the coexisting densities labeled with different symbols, are
also shown.

BULK INHOMOGENEOUS PHASES OF ANISOTROPIC… PHYSICAL REVIEW E 69, 061712(2004)

061712-5



sity peaks. The density and order parameter profiles of the
DSm phase atr=0.3 are plotted in Fig. 4. The period in units
of the small particle length isd/s=1.2796 which means that
the particles with long axes perpendicular to the layers(pref-
erentially localized at the center of the interlayer space) in-
tersect approximately three adjacent layers.

Simulations of the Zwanzig model withk=5 on a lattice
showed an I-DSm transition at a density between 0.47 and
0.55 [31]. Although the results were obtained for a lattice
spacing of 1/3(in units of the shortest particle dimension)
the simulations were repeated for values 1/9 and 1/27 with-
out changes in the stability of the DSm phase. Thus, the
authors concluded that this layered phase may persist in the
continuum limit[31]. The difference in the transition density
found from FMTs0.2868d and from simulationss,0.5d can
be explained using two arguments:(i) As was already
pointed out in Sec. II, the FMF in the uniform density limit
considerably overestimates the isotropic fluid pressure and
thus the theory underestimate the transition densities be-
tween homogeneous and inhomogeneous phases.(ii ) The
transition densities should decrease upon decreasing the lat-
tice spacing in simulations, as the results for the freezing of
parallel hard cubes on a lattice(occurring atr=0.568 for an
edge length equal to two lattice spacings, atr=0.402, for six
lattice spacings, and atr=0.314 for the continuum) illustrate
[38].

Increasing the mean density further, the DSm phase un-
dergoes a first-order transition to the columnar phase as Fig.
3 shows. The restriction of parallelepiped orientations en-
hances the columnar phase stability even for prolate particles
as a phase diagram, to be described below, will show. This
phenomenon can be understood if the Zwanzig model is in-
terpreted as a ternary mixture of particles. Simulations on a
binary mixture of parallel spherocylinders with different as-
pect ratios(specifically 2 and 2.9) show that, instead of a
continuous nematic-smectic transition typical of the pure
component system, the mixture exhibits a first-order
nematic-columnar phase transition[39]. This result was ex-
plained by the poorer packing of rods of different lengths in
the smectic phase as compared to that of rods of the same
length. Simulations and theory show that one of the most
important effects that the aspect ratio polydispersity has on
the phase behavior of hard spherocylinders[40] and binary
mixtures of oblate and prolate particles[28,41], is the en-
hancement of the columnar phase stability. All these results
show that the columnar phase can be stable even for mixture
of particles with different shapes. Although the constituent

particles of the Zwanzig model have the same shape, the
restriction of their orientations changes strongly its relative
packing and thus for somek’s enhance the columnar phase
stability with respect to other phases.

At higher density the columnar phase exhibits a continu-
ous phase transition to an oriented solid phase of prolate
parallelepipeds, as shown in Fig. 5(a). The density and order
parameter profiles of the columnar phase at the bifurcation
point sr=0.3748d are shown in Fig. 6. The periods of the
solid phase along the perpendicular and parallel directions
are d' /s=1.2690 anddi /L=1.5170, respectively. From the
equationr=s1−ndV cell

−1 (Vcell=d'
2 di being the unit cell vol-

ume), the fraction of vacancies of the solidn can be calcu-
lated as 0.0845. The continuous nature of the columnar-
oriented solid transition changes to first order at somek
between 4 and 4.5, as Fig. 5(b) shows fork=4. The order
parameterQsr d is very high in the unit cell except in its
borders, where it exhibits small oscillations[see Fig. 6(b)].
These oscillations are a consequence of the microsegregation
of species “x” and “y” in the newly formed solid phase,
which is preferentially formed by particles of species “z”
localized around the positionsx* ,y*d=s0,0d. This feature is
shown in Fig. 7, where the sum of the density profiles of
species “x” and “y” fr'sr d=rxsr d+rysr dg is plotted. While
the columnar packing is responsible for the presence of the
local maxima at the center of the unit cell, the species “x”
and “y” begin to segregate to the borders of the cells±0.5,0d
and s0, ±0.5d, respectively(see the four local maxima at
these positions) as the new solid phase is formed. The long
axes of the perpendicular species lie on the lateral sides of
the parallelepipedic unit cell, while their centers of mass are
preferentially localized at the centers of these sides.

FIG. 4. Density profile(solid line) and order parameter profile
(dashed line) of the DSm phase atr=0.3sz* ;z/dd.

FIG. 5. F* vs r for k=4.5 (a) andk=4 (b). OS: oriented solid
phase.

FIG. 6. Density(a) and order parameter(b) profiles of the co-
lumnar phase at a density corresponding to the bifurcation point of
Fig. 5 (a) (x* ;x/d'; y* ;y/d').
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The calculation of the free-energy branches for several
stable inhomogeneous phases and the phase transitions be-
tween them(as it was described fork=4.5) has been carried
out for 15 values ofk (ten of them in the range 1økø5 and
five of them in the range 5økø10). The resulting phase
diagram is plotted in Fig. 8. The isotropic phase of prolate
parallelepipeds with 1økø3.5 undergoes a continuous
phase transition to the plastic solid phase. The transition
points are joined with the spinodal line that has been calcu-
lated through the divergence of the structure factor. Notwith-
standing that a functional minimization was carried out for
eachk to check the continuous nature of the transitions. The
plastic solid is stable forkø2.5 up to densities around 0.5.
At these values the numerical minimization turns out to be
cumbersome because of the large number of Fourier ampli-
tudes necessary to correctly describe the inhomogeneous
profiles. Thus, the high density part of the phase diagram
sr*0.5d has not been calculated with the numerical proce-
dure described above. At higher densities a Gaussian-type
parametrization of the density profiles is required, which ob-
viously has a lower degree of accuracy.

For k=2.95 the plastic solid exhibits a very weak first-
order phase transition to the discotic smectic phase(labeled
as 1 in Fig. 8), and the latter a phase transition to the colum-
nar phase at higher densities. But the most representative
region of the phase diagram where the discotic smectic is
stable is fork around 4.5 where this layered phase exhibits a
first-order phase transition to columnar phase(the shaded
area of Fig. 8 limits the instability region against phase sepa-
ration between both phases). For k between 4 and 5 the

columnar phase undergoes a phase transition(first order for
k=4 and continuous for other values shown) to the oriented
solid phase. The nematic phase begins to be stable fork.5
with its stability region bounded below by the first order
isotropic-nematic transition and above by a continuous
nematic-smectic transition. Finally, the smectic region is
bounded above by a continuous transition to the oriented
solid phase(see Fig. 8).

Again the nematic-smectic transition points are joined
with spinodal lines and for eachk a minimization was car-
ried out to check numerically the continuous character of the
transition (the smectic solution begins to be stable right at
the spinodal). In Ref. [42] a bifurcation analysis with the
same functional was carried out to study the nature of the
nematic-smectic transition. A thermodynamic and mechani-
cal stability analysis showed that the nematic-smectic transi-
tion is first order, which is in contradiction with the numeri-
cal minimization results presented here. A possible reason
that justifies this contradiction could be that theN-Sm tran-
sition is very weakly first order, so weak that the numerical
accuracy used in the functional minimization can not decide
about its nature. Another possibility is that the numerical
accuracy failure is somewhere in the bifurcation analysis. A
careful revision of this analysis is certainly called for in order
to settle this point.

The available simulation results for freely rotating hard
spherocylinders show that the isotropic phase exhibits a tran-
sition to the solid phase for 0økø4.1 (the solid is plastic
for kø1.35 and oriented for 1.35økø4.1) while the
isotropic-smectic and nematic-smectic transitions begin at
k=4.1 and 4.7, respectively[10] [notice that for hard sphero-
cylinders the length-to-breadth ratio isk=sL+Dd /D]. We
can see that, despite the different particle geometry and the
restricted orientations of the Zwanzig model, the agreement
for the thresholdk at which spatial instabilities to the solid
and smectic phase destabilize the homogeneous phases is
rather good. Also the qualitative picture is similar: elongated
rods form smectics, and more symmetric particles form sol-
ids. The main difference between them is that the Zwanzig
phase diagram presents regions where the columnar and dis-
cotic smectic phases are stable, a difference due to the re-
striction of orientations.

C. Oblate parallelepipeds

The phase diagram of oblate parallelepipedssk,1d is
shown in Fig. 9. The main differences after comparing the
phase diagrams of prolate(Fig. 8) and oblate particles are
that in the latter:(i) The smectic is no more a stable phase.
(ii ) The region of columnar phase stability is considerably
larger.(iii ) The stability region of the plastic solid is reduced
(in fact this phase is stable only up tok−1<2.5) at the ex-
pense of that of the discotic smectic phase.(iv) The transi-
tions to the latter are strongly first order in nature(except for
k−1=4.5). (v) The oriented solid phase is replaced by a per-
fectly oriented solid in which “x” and “y” species are absent.
This phase, after scaling in thez direction, is the same as the
solid of parallel hard cubes. A solution from the FMF mini-
mization with three dimensional spatial modulations and

FIG. 7. Sum of density profiles:r'sr d;rxsr d+rysr d vs r'
*

;sx* ,y*d corresponding to the columnar phase shown in Fig. 6.

FIG. 8. Phase diagram of prolate parallelepipeds. Several phases
are labeled like in Figs. 2, 3, and 5(N: nematic and PS: plastic
solid) and the transition densities are labeled with different symbols
(Star: isotropic; diamond: plastic solid; circle: columnar; down tri-
angle: discotic smectic; up triangle: smectic; and square: oriented
solid). The shaded areas limit the regions of two phase coexistence.
The transitions labeled by by 1, 2, and 3 are first order in nature.

BULK INHOMOGENEOUS PHASES OF ANISOTROPIC… PHYSICAL REVIEW E 69, 061712(2004)

061712-7



with g'Þ0 has not been found in the parallelepipedic unit
cell (the cases of face-centered and body-centered cubic unit
cells have not been tried here).

Finally, similar by to what happens with prolate parallel-
epipeds, the nematic phase begins to be stable atk−1*5. It
undergoes a continuous phase transition to the columnar
phase(the transition points of Fig. 9 are joined with the
spinodal curve).

The parallelepipeds withk−1=1.5 exhibit an interesting
phase behavior. At low densities the isotropic phase destabi-
lizes with respect to the columnar phase and not with respect
to the PS phase. This example shows that the prediction for
phase transitions using only the spinodal instability calcula-
tions can generate uncertainties about the possible symme-
tries of the inhomogeneous phases. In fact these calculations
do not allow to decide in this example if the new phase is a
plastic solid or a columnar phase. Only by a complete mini-
mization of the FMF could it be concluded that the columnar
phase is the stable one.

In Fig. 10(a) the density profiles of perpendicularfr'szdg
and parallelfriszdg species are shown for the discotic smectic
phase of oblate particles withk−1=2.5, while the order pa-
rameter profile is shown in Fig. 10(b). This discotic smectic
phase coexists atr=0.4244 with the plastic solid phase. The
period in units of the large parallelepiped edge length is
d/s=1.2142. The random orientation of the uniaxial axes
within the layers is confirmed by the high negative values of
the order parameter at the position of the density peak of the
perpendicular species. The main difference between the DSm
of Fig. 10 and that of Fig. 7 is that the “z” species is now
localized preferentially not at the center of the interlayer
space, but near the smectic layers[see Fig. 10(a)], exhibiting

two local maxima at each side of the layer. This effect can be
explained by the depletion force that the perpendicular spe-
cies exerts on the parallel one.

TheN-Sm sN-Cd and the Sm-OSsC-POSd transition lines
of Figs. 8 and 9 converge asymptotically tor=0.3143, the
value of the fluid-solid bifurcation density, ask→`sk−1

→`d. The reason for this is that upon increasingksk−1d the
number of rods(plates) with orientation perpendicular to the
director becomes vanishing small, and then the system is,
after rescaling thez direction, almost equivalent to a system
of parallel cubes.

Simulations of the Zwanzig model on a 15315315 lat-
tice with spacing 1/3 show that oblate parallelepipeds with
dimensions 53531 undergo a transition to a phase exhib-
iting a columnar structure[31] at a density somewhere be-
tween 0.55,r,0.65. On increasing the system size to 30
330330 the global columnar order disappears, but local
correlations persist in the fluid with particle alignment dis-
tributed evenly among the three available orientations. In the
same work the effect that orientational constraints have on
the stability of the inhomogeneous phases was studied.
While a system of biaxial 53331 “tiles” without orienta-
tional constraints(except those inherent to the Zwanzig
model) stabilizes in a smectic phase with the shortest edge
lengths perpendicular to the layers, the system composed by
“tiles” with all their long edge lengths parallel to each other
exhibits a phase transition to the smectic phase with these
edge lengths perpendicular to the layers, similar to what is
found here for uniaxial oblate parallelepipeds(the discotic
smectic phase).

Simulations of hard cut spheres show that fork=0.3 there
is an isotropic-solid transition, fork=0.2 an isotropic-
columnar transition(the isotropic phase might instead be a
peculiar “cubatic” phase) and fork=0.1 a nematic-columnar
one[9]. From these results it can be concluded that the effect
that the degree of particle anisotropy has on the symmetry of
the stable phases for both cut spheres and hard parallelepi-
peds with restricted orientations, is qualitatively similar.

IV. CONCLUSIONS

The goal of this article has been the calculation of the
phase diagram of the Zwanzig model for prolate and oblate
parallelepipeds centering the attention on the phase transi-
tions to inhomogeneous phases. For this purpose the funda-
mental measure functional for hard parallelepipeds with re-
stricted orientations has been used. This functional is exactly
the same for any particle shape(prolate and oblate depending
on k), which allows for a unified study of the phase behavior
of both kinds of particles. A free minimization of the func-
tional was carried out with the only constraints of choosing a
parallelepipedic unit cell and of imposing uniaxial symmetry
in the inhomogeneous phases. The latter is justified by
uniaxial symmetry of the particles. The degree of approxi-
mation to the exact density profiles was controlled by the
cutoff imposed on the reciprocal lattice numbers in the Fou-
rier expansion of the density profiles.

A system of parallel hard cubes was separately studied,
which was motivated by recent simulations on this system

FIG. 9. Phase diagram of oblate parallelepipeds(the same sym-
bols and labels of Fig. 8 are used). POS: Perfectly oriented solid.

FIG. 10. Density(a) and order parameter(b) profiles of the
DSm phase coexisting atr=0.4244 with the PS.(a) Shows the
density profiles of perpendicularsr'd and parallelsrid species.
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[33,34]. Applying a modified versions of the FMF to im-
prove the description of the PHC liquid, along the same lines
as Refs.[36] and[37], the continuous transition point to the
solid phase and the equation of state of the solid were calcu-
lated from the divergence of the structure factor and from the
functional minimization with respect to Gaussian density
profiles. Although the transition density and fraction of va-
cancies change in the right direction, these results are still far
from the simulations. In fact, the solid phase is poorly de-
scribed by the new functional. The poor convergence of the
PHC virial series does not make this procedure as effective
as for hard spheres. Further refinement of the method and the
proper inclusion of vacancies in simulations of the solid
phase will probably improve the agreement between theory
and simulations.

The original FMF for PHC was minimized to study the
relative stability of the smectic, columnar, and solid phases,
starting at low densities from the bifurcation point. The solid
phase is the only stable phase, followed by the columnar and
the smectic(in order of energy stability). At high densities
the same behavior is shown from calculations using cell
theory, functional minimization with Gaussian density pro-
files and computer simulations[34].

The system of prolate and oblate parallelepipeds exhibits
a very rich phase behavior. Apart from the plastic or oriented
solid, smectic, and columnar phases, which are present also
in systems of prolate(spherocylinders[10]) and oblate(cut
spheres[9]) particles, a new phase appears: the discotic

smectic, the existence of which was confirmed by simula-
tions [31]. The close relation between the particle anisotropy
and symmetry of the stable phases(elongated particles form
smectics, flattened one form columnars and more isotropic
particles form solids) which has been observed in simula-
tions [8–10] and experiments[43] is confirmed by this
simple model.

There are two important effects that the restriction of ori-
entations has on the phase diagram topology:(i) The already
pointed out stability of the discotic smectic.(ii ) The stability
of the columnar phase of prolate parallelepipeds for some
aspect ratios. The structural properties of inhomogeneous
phases that were found through functional minimization al-
low us to elucidate interesting effects such as the microseg-
regation behavior of different species in the solids and the
depletion effect between particles in the smectics. Those
findings endorse the predictive power of the FMF in the
description of highly inhomogeneous phases.
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